Hamiltonian reduction for affine Grassmannian slices and truncated shifted Yangians

نویسندگان

چکیده

Generalized affine Grassmannian slices provide geometric realizations for weight spaces of representations semisimple Lie algebras. They are also Coulomb branches, symplectic dual to Nakajima quiver varieties. In this paper, we prove that neighboring generalized related by Hamiltonian reduction the action additive group. We a weaker version same result their quantizations, algebras known as truncated shifted Yangians.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yangians and quantizations of slices in the affine Grassmannian

We study quantizations of transverse slices to Schubert varieties in the affine Grassmannian. The quantization is constructed using quantum groups called shifted Yangians — these are subalgebras of the Yangian we introduce which generalize the Brundan-Kleshchev shifted Yangian to arbitrary type. Building on ideas of Gerasimov-Kharchev-Lebedev-Oblezin, we prove that a quotient of the shifted Yan...

متن کامل

Highest Weights for Truncated Shifted Yangians and Product Monomial Crystals

Truncated shifted Yangians are a family of algebras which are natural quantizations of slices in the affine Grassmannian. We study the highest weight representations of these algebras. In particular, we conjecture that the possible highest weights for these algebras are described by product monomial crystals, certain natural subcrystals of Nakajima’s monomials. We prove this conjecture in type ...

متن کامل

The Affine Grassmannian

The affine Grassmannian is an important object that comes up when one studies moduli spaces of the form BunG(X), where X is an algebraic curve and G is an algebraic group. There is a sense in which it describes the local geometry of such moduli spaces. I’ll describe the affine Grassmannian as a moduli space, and construct it concretely for some concrete groups. References, including the constru...

متن کامل

Affine Insertion and Pieri Rules for the Affine Grassmannian

We study combinatorial aspects of the Schubert calculus of the affine Grassmannian Gr associated with SL(n,C). Our main results are: • Pieri rules for the Schubert bases of H∗(Gr) and H∗(Gr), which expresses the product of a special Schubert class and an arbitrary Schubert class in terms of Schubert classes. • A new combinatorial definition for k-Schur functions, which represent the Schubert ba...

متن کامل

Schubert Polynomials for the Affine Grassmannian

Confirming a conjecture of Mark Shimozono, we identify polynomial representatives for the Schubert classes of the affine Grassmannian as the k-Schur functions in homology and affine Schur functions in cohomology. Our results rely on Kostant and Kumar’s nilHecke ring, work of Peterson on the homology of based loops on a compact group, and earlier work of ours on non-commutative k-Schur functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2022

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2022.108281